Time-Resolved Measurement of a Charge Qubit
نویسندگان
چکیده
منابع مشابه
Time-resolved measurement of a charge qubit.
We propose a scheme for monitoring coherent quantum dynamics with good time-resolution and low backaction, which relies on the response of the considered quantum system to high-frequency ac driving. An approximate analytical solution of the corresponding quantum master equation reveals that the phase of an outgoing signal, which can directly be measured in an experiment with lock-in technique, ...
متن کاملSpontaneous relaxation of a charge qubit under electrical measurement.
In this work we first derive a generalized conditional master equation for quantum measurement by a mesoscopic detector, then study the readout characteristics of qubit measurement where a number of remarkable new features are found. The work would, in particular, highlight the qubit spontaneous relaxation effect induced by the measurement itself rather than an external thermal bath.
متن کاملSize Distribution Measurement of Candle\'s Soot Nanoparticles by Using Time Resolved Laser Induced Incandescence
Time resolved laser induced incandescence (LII) technique is used to measure size distribution of soot nanoparticles of candle's flame. Pulsed Nd:YAG laser is used to heat nanoparticles to incandescence temperature and the resulting signal is measured. Mass and energy balance equations are numerically solved to calculate temperature of soot particles in low fluence regime. Assuming Plank black ...
متن کاملTime-resolved qubit readout via nonlinear Josephson inductance
We propose a generalization of dispersive qubit readout that provides the time evolution of a flux qubit observable. Our proposal relies on the nonlinear coupling of the qubit to a harmonic oscillator with high frequency, representing a dc superconducting quantum interference device. Information about the qubit dynamics is obtained by recording the oscillator response to resonant driving and su...
متن کاملBistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2009
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.102.033602